The effective field theory within a probability distribution technique that accounts for the self-spin correlation functions is used to investigate the dielectrics properties of a nano-octahedral system described by the spin S=1/2 Ising model. The thermal behavior of the polarizations, susceptibilities, and the hysteresis loops are examined in details and even the details to model a ferroelectric system.
Published in | Communications (Volume 5, Issue 5) |
DOI | 10.11648/j.com.20170505.11 |
Page(s) | 51-57 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2018. Published by Science Publishing Group |
Transverse Ising Model, Ferroelectric, Dirac, Hamiltonian, Polarization, Hysteresis, Susceptibility
[1] | R. Gopala Krishnan and S. Seshamma, Bull. Mater. Sci., Vol. 14, No. 6, December 1991, pp. 1349-1352. |
[2] | Alexander J. Hearmon, Federica Fabrizi, Laurent Ç. Chapon, R. D. Johnson, Dharmalingam Prabhakaran, Physical Review Letters, PRL 108, 237201 (2012). |
[3] | Martí Gich, Ignasi Fina, Alessio Morelli, Florencio Sánchez, Marin Alexe, Jaume Gàzquez, Josep Fontcuberta and Anna Roig, Adv. Mater. 2014, 26: 4645–4652. |
[4] | Jaita Paul, Takeshi Nishimatsu, Yashiyuki Kawazoe, Umesh V. Waghmare, Physical Review Letters, PRL 99, 077601 (2007). |
[5] | Donna C. Arnold, Kevin S. Knight, Finlay D. Morrison, Philip Lightfoot, Physical Review Letters, PRL 102, 027602 (2009). |
[6] | Y. Park, Solid State Commun. 112 (1999) 167. |
[7] | E. K. Tan, J. Osman, D. R. Tilley, Solid State Commun. 117 (2001) 59. |
[8] | Y. Yamasaki, S. Miyasaka, Y. Kaneko, J. P. He, T. Arima, Y. Tokura, Physical Review Letters, PRL 96, 207204 (2006). |
[9] | K. T. Li, V. C. Lo, Solid State Commun. 132 (2004) 49. |
[10] | J. M. Wesselinowa, S. Trimper, Phys. Rev. B 69 (2004) 024105. |
[11] | B. Teng, H. K. Sy, Phys. Rev. B 69 (2004) 104115. |
[12] | Kevin F. Garrity, Karin M. Rabe, David Vanderbilt, PhysicalReview Letters, PRL 112, 127601 (2014). |
[13] | T. Kaneyoshi, Phys. A 293 (2001) 200. |
[14] | T. Kaneyoshi, Phys. A 319 (2003) 355. |
[15] | Ruixiang Fei, Wei Kang, Li Yang, physical Review Letters, PRL 117, 097601 (2016). |
[16] | A. OubelKacem, I. Essaoudi, A. Ainane, M. Saber, J. Gonzalez, K. Barner, Ferroelectric films described by the transverse Ising model, Physica B 404 (2009) 4190-4197. |
[17] | P. G. de Gennes, Solid State Commun. 1 (1963) 132. |
[18] | R. Blinc, B. Zeks, Soft Modes in Ferroelectrics and Antiferroelectrics, North- Holland, Amsterdam, 1974. |
[19] | R. Pirc, R. Blinc, Phys. Rev. B 70 (2004) 134107. |
[20] | X. Z. Wang, X. Y. Jiao, J. J. Wang, J. Phys. Condens. Matter 4 (1992) 3651. |
[21] | Y. G. Wang, W. L. Zhong, P. L. Zhong, Phys. Rev. B 53 (1996) 11439. |
[22] | W. L. Zhong, B. D. Qu, P. L. Zhang, Y. G. Wang, Phys. Rev. B 50 (1994) 12375. |
[23] | H. X. Cao, Z. Y. Li, J. Phys. Condens. Matter 15 (2003) 6301. |
[24] | J. M. Wesselinowa, Phys. Stat. Sol. (b) 223 (2001) 737. |
[25] | C. L. Wang, W. L. Zhong, P. L. Zhang, J. Phys. Condens. Matter 3 (1992) 4749. |
[26] | C. L. Wang, S. R. P. Smith, D. R. Tilley, J. Phys. Condens. Matter 6 (1994) 9633. |
[27] | I. B. Misirlioglu, G. Akcay, S. Zhong, S. P. Alpay, J. Appl. Phys. 101 (2007) 036107. |
[28] | L. Q. Chen, in: C. H. Ahn, K. M. Rabe, J.-M. Triscone (Eds.), Physics of Ferroelectrics: A Modern Perspective, Springer, Berlin, 2007, pp. 363–372. |
[29] | Y. Watanabe, Phys. Rev. B 57 (1998) 789. |
[30] | L. W. Zhong, Y. G. Wang, P. L. Zhang, Phys. Lett. A 189 (1994) 121. |
[31] | D. L. Tao, Y. Z. Wu, Z. Y. Li, Phys. Stat. Sol. (b) 231 (2002) 3. |
[32] | J. M. Wesselinowa, Phys. Stat. Sol. (b) 231 (2002) 187. |
[33] | K. lshikawa, K. Yoshikawa, N. Okada, Phys. Rev. B 37 (1988) 5852. |
[34] | E. V. Colla, A. V. Fokin, Yu. A. Kumzerov, Solid State Commun. 103 (1997) 127. |
[35] | Alioune Aidara Diouf, Bassirou Lo, Alhadj Hisseine Issaka Ali, Aboubaker Chedikh Beye, American Journal of Nanomaterials, 2016, Vol. 4, No. 1, 1-7. |
[36] | N. Boccara, Phys. Lett 94 A, 185 (1963). |
[37] | F. Zernike, Physica (Ultrecht) 7, 565 (1940). |
[38] | J. W. Tucker, J. Phys. A: Math. Gen. 27 (1994) 659. |
[39] | Oscar Iglesias, Amilcar Labarta, Journal of Magnetism and Magnetic Materials 738, 290 (2005). |
[40] | Y. Benhouria, I. Essaoudi, A. Ainane, R. Ahuja, F. Dujardin, J. Supercond Nov Magn, 10.1007/s10948-014-2571-7 (2014). |
[41] | Y. Benhouria, I. Essaoudi, A. Ainane, R. Ahuja, F. Dujardin, Chinese Jornal of Physics, 10.1016/j.cjph.2016.06.012 (2016). |
APA Style
Alioune Aidara Diouf, Bassirou Lo, Abdoulaye Ndiaye Dione, Cheikh Birahim Ndao, Aboubaker Chedikh Béye. (2018). How to Model an Ising Ferroelectric System: Case of the Investigation of the Dielectrics Properties of a Nano-Octahedral Ferroelectric System. Communications, 5(5), 51-57. https://doi.org/10.11648/j.com.20170505.11
ACS Style
Alioune Aidara Diouf; Bassirou Lo; Abdoulaye Ndiaye Dione; Cheikh Birahim Ndao; Aboubaker Chedikh Béye. How to Model an Ising Ferroelectric System: Case of the Investigation of the Dielectrics Properties of a Nano-Octahedral Ferroelectric System. Communications. 2018, 5(5), 51-57. doi: 10.11648/j.com.20170505.11
AMA Style
Alioune Aidara Diouf, Bassirou Lo, Abdoulaye Ndiaye Dione, Cheikh Birahim Ndao, Aboubaker Chedikh Béye. How to Model an Ising Ferroelectric System: Case of the Investigation of the Dielectrics Properties of a Nano-Octahedral Ferroelectric System. Communications. 2018;5(5):51-57. doi: 10.11648/j.com.20170505.11
@article{10.11648/j.com.20170505.11, author = {Alioune Aidara Diouf and Bassirou Lo and Abdoulaye Ndiaye Dione and Cheikh Birahim Ndao and Aboubaker Chedikh Béye}, title = {How to Model an Ising Ferroelectric System: Case of the Investigation of the Dielectrics Properties of a Nano-Octahedral Ferroelectric System}, journal = {Communications}, volume = {5}, number = {5}, pages = {51-57}, doi = {10.11648/j.com.20170505.11}, url = {https://doi.org/10.11648/j.com.20170505.11}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.com.20170505.11}, abstract = {The effective field theory within a probability distribution technique that accounts for the self-spin correlation functions is used to investigate the dielectrics properties of a nano-octahedral system described by the spin S=1/2 Ising model. The thermal behavior of the polarizations, susceptibilities, and the hysteresis loops are examined in details and even the details to model a ferroelectric system.}, year = {2018} }
TY - JOUR T1 - How to Model an Ising Ferroelectric System: Case of the Investigation of the Dielectrics Properties of a Nano-Octahedral Ferroelectric System AU - Alioune Aidara Diouf AU - Bassirou Lo AU - Abdoulaye Ndiaye Dione AU - Cheikh Birahim Ndao AU - Aboubaker Chedikh Béye Y1 - 2018/01/31 PY - 2018 N1 - https://doi.org/10.11648/j.com.20170505.11 DO - 10.11648/j.com.20170505.11 T2 - Communications JF - Communications JO - Communications SP - 51 EP - 57 PB - Science Publishing Group SN - 2328-5923 UR - https://doi.org/10.11648/j.com.20170505.11 AB - The effective field theory within a probability distribution technique that accounts for the self-spin correlation functions is used to investigate the dielectrics properties of a nano-octahedral system described by the spin S=1/2 Ising model. The thermal behavior of the polarizations, susceptibilities, and the hysteresis loops are examined in details and even the details to model a ferroelectric system. VL - 5 IS - 5 ER -